
Eurographics Symposium on Parallel Graphics and Visualization (2013)
F. Marton and K. Moreland (Editors)

Scalable Parallel Feature Extraction and Tracking for
Large Time-varying 3D Volume Data

Yang Wang1, Hongfeng Yu2, Kwan-Liu Ma1

1University of California, Davis
2University of Nebraska-Lincoln

Abstract
Large-scale time-varying volume data set can take terabytes to petabytes of storage space to store and process.
One promising approach is to process the data in parallel, extract and analyze only features of interest, thus
reducing required memory space by several orders of magnitude for the following visualization tasks. However,
extracting volume features in parallel is a non-trivial task as features might span over multiple processors, and
local partial features are only visible within their own processor. In this paper, we discuss how to generate and
maintain connectivity information of features across different processors. Based on the connectivity information,
partial features can be integrated, which makes it possible to extract and track features for large data in parallel.
We demonstrate the effectiveness and scalability of our approach using two data sets with up to 16384 processors.

Categories and Subject Descriptors (according to ACM CCS): I.3.2 [Computer Graphics]: Graphics Systems—
Distributed/network graphics I.4.6 [Image Processing And Computer Vision]: Segmentation—Region growing

1. Introduction

The accessibility to supercomputers with increasing comput-
ing power has enabled scientists to simulate physical phe-
nomena of unprecedented complexity and resolution. These
simulations generate large-scale time-varying data that can
take tera- or even peta-bytes of space to preserve. Such stor-
age requirement will be not sustainable towards the forth-
coming exascale computing. One promising solution to the
problem is to reduce the data by storing only features of in-
terest. Extracted features require storage space that can be
several orders of magnitude smaller than raw data.

However, it is a non-trivial task to extract and track fea-
tures embedded in large data. Large simulation data are typ-
ically presented and processed in a distributed fashion, sim-
ply because of the shear size. A feature can span over mul-
tiple distributed data blocks, and its distribution can evolve
over time. Existing research effort on feature-based data vi-
sualization has mostly focused on extracting features us-
ing quantitative measures, such as size, location, shape, and
topology information. These methods can extract partial fea-
tures among individual data blocks, but cannot directly as-
semble partial features to provide integrated descriptions,

unless the distribution of partial features can be captured and
traced efficiently over time.

Efficiently capturing the distribution of features is chal-
lenging with respect to increasing numbers of features and
computing nodes. In this paper, we present a scalable ap-
proach to generating feature information and tracking fea-
ture connectivity information using parallel machines. Com-
pared to the existing approaches that gather the global fea-
ture information in a single host node, our approach only
involves local covered data blocks of target features. This
requires least communication overhead and avoids the po-
tential link contention. We demonstrate the effectiveness and
scalability of our method with two vortical flow data sets on
large parallel supercomputers with up to 16384 processors.

2. Related Work

2.1. Feature Extraction and Tracking

Feature extraction and tracking are two closely related
problems in feature-based visualization. Conventional ap-
proaches extract features from individual time steps and then
associate them between consecutive time steps. Silver and
Wang [SW97] defined threshold connected components as

c© The Eurographics Association 2013.



Yang Wang, Hongfeng Yu, KwanLiu Ma / Scalable Parallel Feature Extraction and Tracking forLarge Time-varying 3D Volume Data

their features, and tracked overlapped features by calculat-
ing their differences. Reinders [RPS] introduced a prediction
verification tracking technique that calculates a prediction by
linear extrapolation based on the previous feature path, and
a candidate will be added to the path if it corresponds to that
prediction. Theisel and Seidel [TS03] represented dynamic
behavior of features as steam lines of critical points in a
higher dimensional vector field, such that no correspondence
analysis of features in consecutive time step is required. Ji
and Shen [JSW03] introduced a method to track local fea-
tures from time-varying data by using higher-dimensional
iso-surfacing. They also used a global optimization corre-
spondence algorithm to improve the robustness of feature
tracking [JS06]. Caban et al. [CJR07] estimated a tracking
window and compared feature distance of textural proper-
ties to find the best match within the window. Bremer et al.
[BBD∗07] described two topological feature tracking meth-
ods where one employs Jacobi sets to track critical points
and the other uses distance measures on graphs to track
channel structures. Muelder and Ma [MM09] introduced a
prediction-correction approach that first predicts feature re-
gion based on the centroid location of that in previous time
steps, and then corrects the predicted region by adjusting the
surface boundaries via region growing and shrinking. This
approach is appealing for its computing efficiency and the
reliability in an interactive system. Ozer and Wei presented
a group feature tracking framework [OWS∗] that clusters
features based on similarity measures and tracks features of
similar behavior in groups. However, it is difficult to obtain
the global feature descriptions if a single processing node
cannot hold the whole volume, unless the descriptions can
be shared and merged in an efficient way.

2.2. Parallel Feature Extraction and Tracking

To boost the speed for feature tracking in data-distributed ap-
plications, Chen et al. [CSP03] developed two stage partial-
merge strategy using the master-slave paradigm. The slaves
first exchange local connectivity information using Binary-
tree merge, and then a visualization host collects and cor-
relates the local information to generate the global connec-
tivity. This approach is not scalable since half of the proces-
sors will become idle after each merge. It is also unclear how
the host can efficiently collect local connectivity information
from the slaves, since gathering operation can be expensive
given a large number of processors.

2.3. Parallel Graph Algorithm and Applications

Graph-based algorithms have long been studied and used
for a wide range of applications, typically along the
line of divide-and-conquer approaches. Grundmann et
al. [GKHE10] introduced a hierarchical graph-based ap-
proach for video segmentation, a closely related research
topic to 3D flow feature extraction as video can be treated
as a space-time volume of image data [KpJSFC02]. In their

Figure 1: The major steps of our parallel feature extraction
and tracking process.

work, a connected sequence of time-axis-aligned subsets of
cubic image volumes are assigned to a set of corresponding
processors, and incident regions are merged if they are inside
the volumes window. Incident regions on window boundary
are first marked as ambiguous and later connected by merg-
ing neighboring window to a larger window, which consists
of the unresolved regions form both window on their com-
mon boundary. This approach is not applicable for mem-
ory intensive situation since the allocated volume size be-
fore merging might already reaches the memory capacity.
Liu and Sun [LS10] made a parallelization of the graph-
cuts optimization algorithm [BK04], in which data are uni-
formly partitioned and then are adaptively merged to achieve
fast graph-cuts. These approaches are suitable for shared-
memory but not message-passing parallelization due to their
frequent shifting on data ranges.

3. Methodology

Figure 1 depicts the major steps of our parallel feature track-
ing process. The data is loaded and distributed among pro-
cessors. Along with features extraction, local feature con-
nectivity information is generated within each processor and
then merged to obtain the global description. Finally, fea-
tures are tracked based on the global connectivity informa-
tion, and connectivity information are updated overtime ac-
cordingly. We represent the global connectivity information
in a distributed fashion to avoid communication bottlenecks
and enable scalable feature extraction and tracking.

3.1. Overview

It is challenging to extract and track features of large time-
varying volume data in parallel. First, although a feature can
be extracted partially on a processor using the conventional
methods, we need to build the connectivity information of
the feature across multiple processors. Such information al-
lows us to obtain the global description of a feature from a
set of neighboring processors, and enables more advanced
operations such as statistical analysis and feature similar-
ity evaluation. Second, such connectivity information can be
dynamically changed with features evolving over time. We
need to update and maintain the connectivity of features in
an efficient fashion to track highly intermittent phenomena.

c© The Eurographics Association 2013.



Yang Wang, Hongfeng Yu, KwanLiu Ma / Scalable Parallel Feature Extraction and Tracking forLarge Time-varying 3D Volume Data

However, building and maintaining connectivity informa-
tion of features typically require intensive data exchanges
among processors, and thus incurs extra communication
cost. To address this issue, we adopt the master-slave
paradigm [CSP03], but carefully design our parallel feature
representation and schedule inter-processor communication
to prevent the host from becoming the bottleneck. The local
connectivity information is computed and preserved only by
the slaves where the correspondent features reside. Hence
there is no global connectivity information maintained at the
host. The host only serves as an interface to broadcast the
criterion of features to the slaves. In this way, the computa-
tion of merging local information is distributed to the slaves.
Thus, we can effectively reduce the potential communication
bottleneck on the host.

In addition, our approach does not need to set a barrier
to wait for all connectivity information to be sent back to the
host. Thus, if there exists features that span over a large num-
ber of nodes but are not explored by the user, the potentially
long computation time for these features will not block the
whole process. This makes it ideal for an interactive system,
where users can select the features of interest and instantly
receive the visual feedback as the features evolve.

Without loss of generality, for each time step, we parti-
tion the volume data into a regular grid of blocks. We then
distribute the data blocks among processors, and each pro-
cessor is assigned with one block.† In general, a feature can
be any interesting object, structure or pattern that is consid-
ered relevant for investigation. Here, a feature is defined as
the collection of voxels enclosed by a certain iso-surface.
Given a sufficiently fine grained partitioning, some features
can cross multiple data blocks.

We consider the following two factors in our communica-
tion scheme design for better performance and scalability:

• Ncom : The number of communications required to build
the connectivity information;

• Nproc/com : The number of processors involved in each
communication.

3.2. Extracting Partial Local Features

Volume features can be extracted using conventional tech-
niques such as region growing, geometry or topology based
clustering, or other domain specific algorithms. In this work,
we use a standard region-growing algorithm [Loh98] to
identify partial features in each data block. This is done by
first spreading a set of seeding points inside each data block,
and then grow voxels into separate regions, each regarded as
a single feature. As data is distributed, a feature can cross
multiple blocks, and each processor is not aware of the par-
tial features identified on the other processors in this stage.

† Our method can be easily extended to the case that each processor
is assigned with multiple data blocks.

Figure 2: Two features cross two blocks and share the same
centroid on the cross-section.

Algorithm 1 Match of two partial features f and f
′

if abs(Pcentroid −P
′

centroid)≤ 1 and abs(Pmin −P
′

min)≤ 1
and abs(Pmax −P

′
max)≤ 1 then

return f matches f
′

end if

3.3. Matching Partial Local Features
For features across multiple blocks, their cross-section in
both sides of the adjacent blocks should match. Therefore,
we can connect two partial features by comparing their
cross-sections on the corresponding boundary surfaces. That
is, two adjacent processors can find possible matches of par-
tial features through exchanging and comparing their bound-
ary voxels. Using a ghost area that stores the boundary sur-
face belonging to a neighbor may help to achieve voxel-wise
matching for partial features. However, maintaining such
ghost areas requires frequent inter-process communication
and is considerably expensive for interactive applications.

To reduce communication cost and accelerate compari-
son, we use a simplified method to detect matches. We first
represent the cross-section on a boundary surface as:
• Pcentroid : The geometric centroid of the cross-section of

the feature;
• Pmin and Pmax: The minimal and maximal coordinates of

the cross-section area.
For two partial features, we then compare their geomet-

ric centroids. If the difference is larger than 1-voxel off-
set, we consider that they belong to different features. How-
ever, only considering geometric centroids is not sufficient
to match two features. In some special cases, two different
features can have the same geometric centroid on the bound-
ary surface, as shown in Figure 2. Therefore, we also need to
consider the min-max coordinates of the cross-section areas
to detect bipartite matching of partial features, as shown in
Algorithm 1. In this way, we only need to exchange 3 coor-
dinate values, which, in most cases, are sufficient to detect
feature connection across a boundary in practice.

3.4. Creating Local Connectivity Tree
Based on our method to match the partial local features,
we can abstract the local connectivity information using a

c© The Eurographics Association 2013.



Yang Wang, Hongfeng Yu, KwanLiu Ma / Scalable Parallel Feature Extraction and Tracking forLarge Time-varying 3D Volume Data

Figure 3: Top: Two blocks with four features across the
blocks. Bottom: The tree structure used for maintaining lo-
cal connectivity information, where the root node is encoded
with the block index, its child nodes are encoded with the
indexes of its neighboring blocks, and the leaves of each
first level child node represent the local partial features. The
leaves should match the ones residing on the corespondent
neighboring block, which are indicated by the dashed lines.

tree structure. As shown in Figure 3. each data block has
six direct neighbors (the outermost blocks have less), each
with a shared boundary surface. The connectivity tree is
constructed by taking the block as root and its six adjacent
blocks as its first level child nodes. A leaf is appended to a
first level node if and only if a local feature touches the cor-
responding boundary surface. Note that a feature can touch
multiple boundary surfaces and thus be attached to multiple
first level nodes.

Note that each voxel in the local data block has a unique
global index, and thus each leaf can be encoded using 3 in-
tegers (global index for Pcentroid , Pmin and Pmax). We use
Pcentroid as the feature index, and sort the sibling leaves ac-
cording to the indexes in ascending order. In addition, the
root and the first level child nodes can be encoded with the
index of corresponding data blocks, which is irrelevant to
the number of features-on-boundary (henceforth referred as
N f b). Therefore, the overall spatial complexity of a local
connectivity tree for each data block is θ(3 ∗ N f b), which
is typically ignorable compared to the volume size.

From the perspective of temporal complexity, the creation
of a local connectivity tree does not introduce extra compu-
tational cost as it can be done along with the region growing
process. The values of Pcentroid , Pmin and Pmax are updated
only if a feature reaches the boundary surface.

3.5. Creating Global Connectivity Information

After a local connectivity tree is created within each data
block, their leaves need to be exchanged and merged to ob-

tain the overall description of a partitioned feature. The ex-
changing and merging process is decisive in that its effec-
tiveness largely affects the overall performance and scalabil-
ity of the feature tracking algorithm as a whole.

3.5.1. Representation of Connectivity Information

Based on the tree structure of local connectivity informa-
tion, the global connectivity information can be described as
a graph that connects the local connectivity trees, as shown
in Figure 3. To facilitate data exchanges among processors,
we adopt the linear representation techniques [Sam90] and
represent the global connectivity information into a feature
table. Each feature has a global unique ID. The table is in-
dexed by the feature IDs, and each entry lists the processors
that contains the corresponding partial local features. Given
this simple representation, once a user selects a feature, each
related processor can query the table to identify the other
processors that need to be communicated to collectively op-
erate on the selected feature.

3.5.2. The Centralized Approach

One possible solution to build the global feature table is to
directly use the master-slave paradigm. When the feature ex-
traction process is done, all local connectivity trees are gath-
ered to the host processor. Then the host starts to merge the
leaves from each connectivity tree and matches the partial
features to build the global feature table.

The merit of this centralized approach lies in that it re-
quires inter-processor communication only once; that is,
Ncom = 1 for each processor. Moreover, the global feature
table can be preserved in the host that it can respond to fea-
ture queries directly without collecting information from the
slaves again. However, this approach has an obvious draw-
back. Since all local connectivity trees are sent to the host,
the number of processors involved in each communication is
Nproc/com =Np, and there exists potential contention, both in
communication and computation, on the host.

3.5.3. The Decentralized Approach

A better solution is to decentralize the gathering and merging
process from using a single host processor to all available
processors. After the feature extraction process is done and
so does the creation of local connectivity tree, an all-gather
process starts to exchange all local connectivity trees among
processors. Each processor first collects a full copy of all
local trees and merges the leaves to obtain the global feature
table. However, this approach does not actually resolve the
contention problem since every processor acts like the host
and it still needs to gather and merge all local trees.

We observe that, for a real-world data set, it is rarely the
case that all features are spanning over every data block. In
addition, it is unnecessary for each processor to construct
a global feature table to contain all features. Each proces-
sor only needs to construct a partial table that records the

c© The Eurographics Association 2013.



Yang Wang, Hongfeng Yu, KwanLiu Ma / Scalable Parallel Feature Extraction and Tracking forLarge Time-varying 3D Volume Data

Figure 4: Construction of partial global feature table with
three processors and two features. There are two communi-
cation stages. At each stage, each processor only communi-
cates with its immediate neighbors. Each entry of the table
is indexed by the feature IDs and lists the processors that
contain the corresponding feature.

other processors sharing the same set of features. Thus, it is
possible for a processor to communicate with a small set of
processors to construct the needed portion of the table. How-
ever, on the other hand, we also observe that each processor
has no information of the partial features identified on the
other processors. Thus, initially, a processor is not aware of
other processors with which can be directly communicated
to gather the partial features.

Based on these observations, we design an iterative ap-
proach that uses a multi-stage communication scheme. Dur-
ing each stage, each processor only communicates with its
immediate neighbors to exchange and propagate the fea-
ture connectivity information. This could be considered as
a higher level of region growing process that starts from one
seeding block and grows to adjacent blocks by exchanging
and merging connectivity information in a breadth-first fash-
ion, until all cross-boundary features are connected.

Figure 4 gives an example of the procedure to construct
a partial global feature table with three processors and two
features.‡ We can see that the feature fa is identified by
the processors PE0 and PE1, and the feature fb is identified
by PE0, PE1 and PE2. Initially, each processor constructs a
partial global feature table initiated with only local features
with their local IDs, such as fa_0, fb_2, and so on. In the
first stage, PE0 exchanges the local connectivity tree with
PE1, and PE1 exchanges the tree with PE2. After exchang-
ing trees, each processor independently matches the partial
features, and updates the corresponding feature IDs and en-
tries in its table. For example, the ID of fa has been changed

‡ For simplicity, we use an example of 1D partitioning. However,
the procedure can be easily extended to 3D cases.

to fa_01 on both PE0 and PE1, and the entry contains the
same processor list. However, for fb, as the information has
not been propagated between PE0 and PE2, its ID is different
on the three processors. In the second stage, each processor
still only communicates with its immediate neighbors, and
the information of fb has been propagated to PE0 and PE2
through PE1. Thus the ID and the processor list are all the
same on the three processors. After an extra communication,
each processor detects there is no further information sent
from its neighbors, and thus the construction of the partial
global feature table is completed.

After having its partial global connectivity table, for any
selected features, each processor can easily find other corre-
sponding processors. For example, in Figure 4, if fa is se-
lected, PE0 and PE1 can mutually find that each other be-
longs to the same communicator, while PE2 is excluded.

The reason we choose the six-direct-neighbor paradigm is
because it can minimize the communication cost. It takes a
maximum of 3n−1 times communications, where n denotes
the maximum processor number among the axes. This cor-
responds to the maximum communications needed for prop-
agating the information of a feature that covers the whole
domain, although this case is nearly impossible in practice.
The temporal complexity for garnering all necessary leaves
is hence as low as O( 3

√
Nproc). And the number of processors

involved in each communication is a constant of a maximum
of six, i.e., Nproc/com ≤ 6.

Another optional paradigm is to let each processor com-
municate with its 26 neighbors, including the adjacent di-
agonal blocks. Communication with the adjacent diagonal
block takes as much as half the time for any block to reach
its furthest diagonal. However, Nproc/com is also increased to
26. For data sets where features only span over a small num-
ber of blocks, the 6-direct-neighbor paradigm outweighs the
26-neighbors paradigm in communication complexity.

3.6. Updating Global Connectivity Information

To track features, we can construct the global connectivity
table for each time step. However, if the time interval is suf-
ficiently small for generating the data, volumetric features
may drift but should not change drastically in neither size,
shape, nor location. We assume that the changes of each fea-
ture are within the range of one block. Base on this assump-
tion, we can optimize feature tracking by incrementally up-
dating global connectivity information over time.

As depicted in Figure 5, each processor constructs a par-
tial global feature table at time step ti. Meanwhile, we main-
tain a communicator, C, which contains the corresponding
processors for each feature. For example, feature fc spans
over PE0, PE1, and PE2. These three processors have the
same table. The table of PE3 is empty at ti. PE0, PE1 and
PE2 belong to the same communicator C.

For the next time steps, ti+1, each processor continues to

c© The Eurographics Association 2013.



Yang Wang, Hongfeng Yu, KwanLiu Ma / Scalable Parallel Feature Extraction and Tracking forLarge Time-varying 3D Volume Data

Figure 5: Update of partial global feature table with four
processors and one feature. feature fc is extracted and ad-
justed in stage 0 followed by three communication stages to
record the possible shrinking and expanding of the feature.

predict and correct boundaries as to extract partial local fea-
tures. For existing features, their IDs are retained in the par-
tial global feature table. For the new features, their IDs are
added into the table. And IDs are erased from the table if the
corresponding features drift away from that block. As shown
in Figure 5, fc leaves PE0 and enters PE3. In this case, the
table of PE0 becomes empty, and the table of PE3 adds a
new entry. At this time point, the feature ID on PE3 is not
the same as the others, as the feature has not been matched
yet. And PE0, PE1 and PE2 still belong to C.

Then we start the updating of the connectivity informa-
tion. In the first stage, PE0, PE1, and PE2 perform an all-
gather operation within their communicator C to update the
connectivity. PE0 is then removed from the corresponding
entry on PE1 and PE2, and also removed from C. In the
second stage, each processor exchanges the local connectiv-
ity information with the immediate neighbors as the decen-
tralized approach in Section 3.5.3. The information of fc is
propagated between PE2 and PE3. In the third stage, all the
processors in the communicator C perform an all-gather op-
eration again to update the connectivity. PE3 is propagated
to the rest of processors C, and then PE1, PE2, and PE3 have
the same table at ti+1. Given the unified information, we can
then update the communicator C by including PE3 with re-
spect to fc.

This update procedure can be easily extended to the cir-
cumstances with more processors and features. We note that
the cost of collective communication is marginal within a
communicator of limited size. By leveraging this nice prop-
erty, for each feature, we only need at most three stages

Figure 6: Left: The volume rendering of a single time step of
the combustion data set; Right: Selected features of interest
extracted tracked overtime.

Figure 7: Left: The volume rendering of a single time step
of the vortex data set; Right: Selected features of interest
extracted tracked overtime.

to update the connectivity information, independent of the
length of the feature.

4. Results

We test our feature extraction and tracking algorithm using
the NERSC Hopper cluster on two datasets. A 400 time steps
2563 vortex data set obtained from a combustion solver that
can simulate turbulent flames, and a 100 time steps 10243

vortex data set synthesized from the 1283 volume data set
used in the other works [SW97, JSW03, JS06]. In the com-
bustion data set, each voxel contains the magnitude value of
vorticity derived from velocity using a curl operator. As time
evolves, vortical features may vary from small amassed blob
features to long curly features that span over large portion
of the volume. Figures 6 and 7 show the examples of identi-
fied and tracked features in these two data sets, which match
the non-parallelized tracking results. Because our design is
to target an in situ setting, large cluster is required for sim-
ulation, also we ignore the I/O cost and only focus on the
computation time in our study.

Time for extracting features (Textract ) Since we use
region-growing based algorithm to extract features, given a

c© The Eurographics Association 2013.



Yang Wang, Hongfeng Yu, KwanLiu Ma / Scalable Parallel Feature Extraction and Tracking forLarge Time-varying 3D Volume Data

Figure 8: Average computation cost per time step for feature
extraction. The left two plots are shown in linear scale, and
the right plots are shown in logarithmic scale. The speedup
is linear with the number of processors.

fixed specification of feature, the computation time is deter-
mined by the size of the volume as well as the number of
processors being used. Once the volume data and its parti-
tioning, a.k.a. the size of each data block is determined, the
computation time for extracting residing features remains
approximately the same. In post-processing, the size of each
data block decreases with the increasing number of proces-
sors, and hence so does the time spent on extracting features.
As depicted in Figure 8, Textract is approximately log-linear
decreased as the number of processors increases.

Create Local Connectivity Tree (Tcreate) Despite the size
of each data block, the computation cost for creating and up-
dating local connectivity tree is dependent on the number of
the features extracted within the original volume, or, more
precisely, the number of features that touches the boundary
surface of their residing data block. As shown in Figure 9,
similar to Textract , Tcreate decreases as the number of proces-
sors increases , and as the number of feature-on-boundary
decreases accordingly. For both the combustion and vorticity
data set, it takes an average of 0.1 seconds to create the local
connectivity tree, approximately 0.5% the time of Textract us-
ing the same amount of processors. The Tcreate/Textract ratio
increases but does not succeed 1% in our test, hence Tcreate
is not considered as a bottleneck.

Create Global Connectivity Information (Tmerge) We
also compared the performance for both centralized and de-
centralized approach in creating global connectivity infor-
mation, which is the major factor related to the scalability of
our algorithm. Though the number of features-on-boundary
decreases as more processors involve, the communication

Figure 9: Average computation cost per time step for cre-
ating local connectivity tree. The speedup is linear with the
number of processors. The time cost is approximately pro-
portional to the number of features-on-boundary.

Figure 10: The comparison of the average computation cost
per time step between the centralized and the decentralized
approach. The centralized approach works well for a small
number of processors while the decentralized approach ex-
ceeds after a certain number, e.g. 128 processors for the
combustion data set, is used.

cost for the centralized approach increases as Np increases.
As shown in Figure 10, the centralized approach is suitable
for scenarios that only a small number of processors are re-
quired, while the decentralized approach outperforms when
using large amount of processors. From the overall perfor-
mance perspective, when Tmerge exceeds Textract after using
certain amount of processors, 2048 for instance in Figure 11,
the overall execution time rebounds for the centralized ap-
proach. On the other hand, the decentralized approach scales
well up to 16384 processors for the combustion data set, as
the communication cost is as low as O( 3

√
Np).

c© The Eurographics Association 2013.



Yang Wang, Hongfeng Yu, KwanLiu Ma / Scalable Parallel Feature Extraction and Tracking forLarge Time-varying 3D Volume Data

Figure 11: The comparison of the average computation cost
per time step for different approaches to global connectiv-
ity information generation. The centralized approach scales
up to 2048 processors but the merging time outweighs the
extraction time when using more processors; The decentral-
ized approach scales linearly up 16384 processors for the
combustion data set.

5. Conclusion

We present a scalable approach to extracting and track-
ing features for large time-varying 3D volume data using
parallel machines. We carefully design the communication
scheme such that only minimal amount of data need to be ex-
changed among processors through local communications.
The features are tracked in parallel by incrementally up-
dating the connectivity information over time. Compare to
the naive centralized solution, our decentralized approach
can significantly reduce communication cost and ensure the
scalability with up to 16384 processors. To the best of our
knowledge, no prior approaches can extract and track fea-
tures at the scale in terms of the number of processors we
have achieved.

In the future, we plan to integrate our approach with large
scientific simulations and conduct experimental studies on
in situ feature extraction and tracking. The study can possi-
bly enable scientists to capture highly intermittent transient
phenomena which could be missed in post-processing. In ad-
dition, we would like to investigate the feature-base data re-
duction and compression techniques to significantly reduce
simulation data but retain the essential features for scientific
discovery. Our parallel feature extraction and tracking ap-
proach builds a solid foundation for these future studies.

6. Acknowledgment

This work has been supported in part by the U.S. National
Science Foundation through grants OCI-0749227, CCF-
0811422, OCI-0850566, and OCI-0905008, and also by the
U.S. Department of Energy through the SciDAC program
with Agreement No. DE-FC02-06ER25777 and DE-FC02-
12ER26072, program manager Lucy Nowell.

References
[BBD∗07] BREMER P.-T., BRINGA E. M., DUCHAINEAU

M. A., GYULASSY A. G., LANEY D., MASCARENHAS A.,
PASCUCCI V.: Topological feature extraction and tracking. Jour-
nal of Physics: Conference Series 78, 1 (2007), 012007. 2

[BK04] BOYKOV Y., KOLMOGOROV V.: An experimental com-
parison of min-cut/max- flow algorithms for energy minimization
in vision. IEEE Transactions on Pattern Analysis and Machine
Intelligence 26, 9 (2004), 1124–1137. 2

[CJR07] CABAN J., JOSHI A., RHEINGANS P.: Texture-based
feature tracking for effective time-varying data visualization.
IEEE Transactions on Visualization and Computer Graphics 13,
6 (2007), 1472 –1479. 2

[CSP03] CHEN J., SILVER D., PARASHAR M.: Real time fea-
ture extraction and tracking in a computational steering environ-
ment. In Proceedings of High Performance Computing Sympo-
sium (2003), pp. 155–160. 2, 3

[GKHE10] GRUNDMANN M., KWATRA V., HAN M., ESSA I.:
Efficient hierarchical graph-based video segmentation. In Pro-
ceedings of Computer Vision and Pattern Recognition (2010). 2

[JS06] JI G., SHEN H.: Feature tracking using earth mover’s dis-
tance and global optimization. In Proceedings of Pacific Graph-
ics (2006). 2, 6

[JSW03] JI G., SHEN H.-W., WENGER R.: Volume tracking us-
ing higher dimensional isosurfacing. In Proceedings of IEEE Vi-
sualization (2003), pp. 209–216. 2, 6

[KpJSFC02] KLEIN A. W., PIKE J. SLOAN P., FINKELSTEIN A.,
COHEN M. F.: Stylized video cubes. In Proceedings of ACM
SIGGRAPH Symposium on Computer Animation (2002). 2

[Loh98] LOHMANN G.: Volumetric Image Analysis. Wiley &
Teubner Press, 1998. 3

[LS10] LIU J., SUN J.: Parallel graph-cuts by adaptive bottom-up
merging. In Proceedings of Computer Vision and Pattern Recog-
nition (2010), pp. 2181–2188. 2

[MM09] MUELDER C., MA K.-L.: Interactive feature extraction
and tracking by utilizing region coherency. In Proceedings of
IEEE Pacific Visualization Symposium (2009), pp. 17 –24. 2

[OWS∗] OZER S., WEI J., SILVER D., MA K.-L., MARTIN P.:
Group dynamics in scientific visualization. In Large Data Anal-
ysis and Visualization (LDAV), 2012 IEEE Symposium on. 2

[RPS] REINDERS F., POST F. H., SPOELDER H. J. W.: Visual-
ization of time-dependent data using feature tracking and event
detection. 2

[Sam90] SAMET H.: Applications of Spatial Data Structures:
Computer Graphics, Image Processing and GIS. Addison-
Wesley Publishing Company, 1990. 4

[SW97] SILVER D., WANG X.: Tracking and visualizing turbu-
lent 3d features. IEEE Transactions on Visualization and Com-
puter Graphics 3, 2 (1997), 129–141. 1, 6

[TS03] THEISEL H., SEIDEL H.: Feature flow fields. Proceed-
ings of the symposium on Data . . . (2003). 2

c© The Eurographics Association 2013.


